2.1.6. sf_tools.signal package¶
2.1.6.1. Submodules¶
- 2.1.6.1.1. sf_tools.signal.cost module
- 2.1.6.1.2. sf_tools.signal.filter module
- 2.1.6.1.3. sf_tools.signal.gradient module
- 2.1.6.1.4. sf_tools.signal.linear module
- 2.1.6.1.5. sf_tools.signal.noise module
- 2.1.6.1.6. sf_tools.signal.optimisation module
- 2.1.6.1.7. sf_tools.signal.positivity module
- 2.1.6.1.8. sf_tools.signal.proximity module
- 2.1.6.1.9. sf_tools.signal.regression module
- 2.1.6.1.10. sf_tools.signal.reweight module
- 2.1.6.1.11. sf_tools.signal.svd module
- 2.1.6.1.12. sf_tools.signal.validation module
- 2.1.6.1.13. sf_tools.signal.wavelet module
2.1.6.2. Module contents¶
SIGNAL PROCESSING ROUTINES
This module contains submodules for signal processing.
Author: | Samuel Farrens <samuel.farrens@gmail.com> |
---|---|
Version: | 1.0 |
Date: | 06/04/2017 |
References
[Con201312] | Condat, A Primal-Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms, 2013, Journal of Optimization Theory and Applications, 158, 2, 460. [https://link.springer.com/article/10.1007/s10957-012-0245-9] |
[B201112] | Bauschke et al., Fixed-Point Algorithms for Inverse Problems in Science and Engineering, 2011, Chapter 10. [http://rentals.springer.com/product/9781441995698] |
[R201212] | Raguet et al., Generalized Forward-Backward Splitting, 2012, SIAM, v6. [https://arxiv.org/abs/1108.4404] |
[CWB200712] | Candes, Wakin and Boyd, Enhancing Sparsity by Reweighting l1 Minimization, 2007, Journal of Fourier Analysis and Applications, 14(5):877-905. [https://arxiv.org/abs/0711.1612] |