2.1.2.1.3. sf_tools.image.quality module¶
QUALITY ASSESSMENT ROUTINES
This module contains methods and classes for assessing the quality of image reconstructions.
Author: | Samuel Farrens <samuel.farrens@gmail.com> |
---|---|
Version: | 1.2 |
Date: | 20/10/2017 |
Notes
Some of the methods in this module are based on work by Fred Ngole.
-
sf_tools.image.quality.
nmse
(image1, image2, metric=<function mean>)[source]¶ Normalised Mean Square Error
This method computes the NMSE of two input images, or the result of the input metric on a stack of input images.
Parameters: - image1 (np.ndarray) – First image (or stack of images) to be analysed (original image)
- image2 (np.ndarray) – Second image (or stack of images) to be analysed (reconstructed image)
- metric (function) – Metric to be apllied to NMSE results (default is ‘np.mean’)
Returns: Return type: float NMSE value or metric value(s)
Raises: ValueError
– For invalid input data dimensionsSee also
e_error()
- ellipticity error
Notes
This method implements the following equation:
- Equations from [NS2016] sec 4.1:
\[\text{NMSE} = \frac{1}{D}\sum_{i=1}^D \frac{\|\hat{\text{Im}}_i - \text{Im}_i\|_2^2} {\|\text{Im}_i\|_2^2}\]Examples
>>> from image.quality import nmse
-
sf_tools.image.quality.
e_error
(image1, image2, metric=<function mean>)[source]¶ Normalised Mean Square Error
This method computes the ellipticity error of two input images, or the result of the input metric on the ellipticity values.
Parameters: - image1 (np.ndarray) – First image to be analysed (original image)
- image2 (np.ndarray) – Second image to be analysed (reconstructed image)
- metric (function) – Metric to be apllied to ellipticity error results (default is ‘np.mean’)
Returns: Return type: float ellipticity error value or metric value(s)
Raises: ValueError
– For invalid input data dimensionsSee also
nmse()
- nmse error
Notes
This method implements the following equation:
- Equations from [NS2016] sec 4.1:
\[\text{E}_\gamma = \frac{1}{D}\sum_{i=1}^D \|\gamma(\text{Im}_i) - \gamma(\hat{\text{Im}}_i)\|_2\]Examples
>>> from image.quality import e_error